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Abstract. To preserve voter secrecy on untrusted voter devices we pro-
pose to use short voting codes. This ensures voting codes remain practical
even if the voter is able to select multiple voting choices. We embed the
mechanism in a protocol that avoids complex cryptography in both the
setup and the voting phase and relies only on standard cryptographic
primitives. Trusting the setup, and one out of multiple server compo-
nents, the protocol provides vote secrecy, cast-as-intended, recorded-as-
cast, tallied-as-recorded, eligibility and universal verifiability.

Keywords: Internet Voting · Code Voting · Privacy · Verifiability ·
Switzerland

1 Introduction

In an internet voting system, the voter’s client is usually considered untrusted.
Consequentially, cast-as-intended and recorded-as-cast mechanism typically en-
sure the device does not alter the voter’s choice. However, many of these mech-
anisms require the voter to enter their plain vote. Consequentially, the voter’s
device learns the plain vote of the voter.

A solution to safe-guard vote secrecy, even if the voter’s client is malicious,
are voting codes [2]. The voter no longer enters their plain vote, but a voting
code, with the voter’s device unable to attribute the voting code to the plain vote
it represents. However, voting codes often tend to be long, as they incorporate
ciphertext of the plain vote or authentication secrets. This makes entering the
codes tedious for the voter, even more so if multiple voting choices are chosen.

In this work, we introduce short voting codes (1 or 2 digits in reasonable
scenarios). Only as many different voting codes are needed as plain voting choices
are available. In elections with a reasonable set of plain voting choices, the voting
codes are therefore also of reasonable length. For each voter, the voting codes
are assigned differently to the plain voting choices, so the voter’s device does not
learn the plain vote.

We implement this mechanism in a protocol providing vote secrecy, cast-as-
intended, recorded-as-cast, tallied-as-recorded, eligibility verifiability and uni-
versal verifiability. We grant the adversary control of the network, the voter’s
device and some of the multiple server components we call control components.
To guard our security properties, we assume the setup and one out of multiple
server components trusted. Notably, our adversary and trust model, as well as
the achieved properties, conform to the requirements set forward by the Swiss
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chancellery for Swiss political national elections [4].1 Against an adversary only
observing the exchange between the voter and the control components, the sys-
tem achieves everlasting privacy.

The protocol relies on well-know cryptographic constructs, and tasks which
users are familiar with from other applications (entering and comparing short
codes, scanning QR-codes). The setup and voting phases need only few opera-
tions not more complex than signatures and hashes, and are efficient. The tally
phase additionally needs a privacy-preserving tally mechanism such as a homo-
morphic tally or a verifiable shuffle, both well-understood mechanisms.

Related Work Voting codes to achieve privacy on an untrusted voters device’s
were first proposed in 2001 [2]. Previous work directly uses the ciphertext as the
voting code (as in BeleniosVS [3]) or an identifier of the corresponding ciphertext
(as in Pretty Understandable Democracy (PUD) [1]). Further, some schemes use
the voting codes to deliver additional guarantees. In Pretty Good Democracy, the
voting codes are hard to guess to achieve receipt-freeness [10]. Many schemes also
use the voting codes for authentication (i.e. a proposed code voting extension to
the Swiss Post System [12], an other code voting scheme proposed in the Swiss
setting [5] and others [2,7,9,8,5]).

In our adversary and trust model, we observe that proposed protocols usually
are complex, and involve purpose-specific cryptography. To extract the verifica-
tion codes in the voting phase, the Swiss Post protocol requires two round trips
between the control components involving multiple zero-knowledge proofs, en-
cryptions and hashes [11]. For the same purpose, CHVote uses instead a novel
oblivious transfer scheme [6]. A more recent proposal by Hänni et al. managed
to simplify the voting phase using voting codes, however opted for a verifiable
shuffle in the setup phase over all possible voting choices, with its associated
complexity [5]. In this work, we avoid the verifiable shuffle at the cost of an
authenticated (but public, and therefore auditable) channel out of the trusted
setup component.2

Contributions We present a internet voting protocol using short voting codes.
Only as many different voting codes are needed as voting choices are available.

We achieve vote secrecy without trust in the voter’s device. Further, we
provide cast-as-intended, registered-as-cast, tallied-as-recorded, eligibility verifi-
ability and universal verifiability. Trust is required in the setup component, and
a collection of control components, of which only one needs to be honest. The
adversary may control the network and the untrusted components.

The protocol uses few, efficient and readily available cryptographic build-
ing blocks. Besides the verifiable tally mechanism, we need no more advanced
cryptography than signatures, notably we do not need zero-knowledge proofs or
homomorphic encryption in the setup and voting phases.

1 We note, and we have double-checked this fact with the Swiss Chancellery, that the
current Swiss law and its derived ordinances do not forbid code voting.

2 Consider the extensions proposed in section 3.4.
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2 Voter’s view

To introduce the protocol we present the voter’s view. The voter is given a ballot
sheet with a QR code to login, and codes to cast and confirm their vote. See
Figure 1 for an example using realistic parameters of how this might look like.
First, the voter scans the QR code to login 1○. Then, the voter enters the short
voting codes of the voting choices they intend to vote for 2○. The voting codes
are sent to the voting system, which responds with a verification code each. If
and only if these codes match to what is printed on the voting sheet 2○, the
voter is instructed to confirm the vote 3○.

To perform their tasks as instructed, voters need to be able to scan QR codes
and enter and compare short codes; all mechanisms already in use by existing
large-scale systems (e.g. certificate scanning and second factor applications). To
our knowledge, the usability of entering short voting codes in the voting context
has not yet been explored. An extension of SPS incorporating (long) voting codes
has however been shown to not reduce general usability [12].

The voter application needs to essentially only forward values to the voting
system and back to the user, and needs not to encrypt or sign the vote. The
application may guide the user with basic validation (e.g. ensuring the voting
code entered for the first question is between 2 and 4).

Fig. 1. An example of a voting sheet using realistic parameters. 1○ contains a QR code
with Id. 2○ contains the voting codes C and their respective vote verifications VVC .
3○ contains the CA (upper string) and the CV (lower string).
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3 Protocol

The protocol is divided in three phases. In the setup phase, all parties receive
required cryptographic material to run the voting and tally phase. In the voting
phase, the voter submits their vote and performs their individual verifiability
check. In the final tally phase, the votes are decrypted and counted, depending
on the chosen tally mechanism.

Roles In the setup phase, the trusted Administrator decides on the parameters
of the election (participating voters, voting choices, length of keys, etc). The
trusted Setup Component then generates the corresponding key material and
distributes it over secure channels to the other participants.

In the voting phase, the Voter casts and confirms their vote using their
voting device over insecure channels. Voters can verify casting and confirmation
is successful without trust in their device neither for privacy nor verifiability.

In all phases of the protocol, the Control Components guarantee correctness
and privacy of the election. We require only a single control component to be
honest for the properties to be preserved. The Adversary learns the data of
untrusted protocol participants and can act on their behalf. Further, it can read,
drop or add messages exchanged over untrustworthy channels.

Notation We choose random with r←−. We denote modular addition with ⊕n for
n the modulo value. If n is obvious from the context, we may omit it.

We use boldface for lists, for example l = [a1, a2,...]. We call a list composed
out of pairs a dictionary, for example d = [(a1, b1), (a2, b2)]. We look for a match
in a dictionary with .←− (i.e. x .←− (2, .) ∈ [(1, a), (2, b)] results in x = b). If no
match is found, or more than one, the process terminates.

We denote the group of permutations of integers up to s as Ps (e.g. P3

includes [1, 2, 3] or [2, 3, 1]). Using ∗, we apply permutations to themselves (e.g.
[1, 2, 3] ∗ [2, 3, 1] = [3, 1, 2]), and to the right value of the pairs in a dictionary
(e.g. [(1, a), (2, b), (3, c)] ∗ [3, 1, 2] = [(1, b), (2, c), (3, a)]).

When a party encounters an assert with a falsy expression (like assert false
or assert 0 ), then the party aborts processing. We use A and S to denote
communication sent over the authenticated and secure channel, respectively.

Parameters The authorities decide on the following parameters and algorithms:

– Zna to pick authentication secrets from. The adversary is given their hashes,
so na must be big enough for picked values to be hard to brute-force.

– Znv
to pick verification codes from. The adversary has a single try to convince

the voter, so nv must be big enough for picked values to be hard to guess.
– Id is a list of identifiers such that there is one for each eligible voter.3

3 If an adversary guesses such an identifier, it may vote on the voter’s behalf. While
the voter will detect if a wrong vote has been cast, and consequentially does not
confirm (which prevents tallying), they cannot use the system to cast their own vote
anymore. Therefore, for availability, hard to guess identifiers are a good idea.
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– PtC (Plain to Codes) is a dictionary which maps each plain vote P ∈ P to
a unique code C ∈ C (e.g. [(’Yes’, A), (’No’, B), (’Abstain’, C)]).

– H is a pre-image resistant hash function (e.g. SHA256). The scheme needs
to provide a hash function Hash(m) for message m.

– S is an EUF-CMA secure signature scheme (e.g. ECDSA). The scheme needs
to provide a sign function σ ← Sign(sk, r,m) for secret key sk, randomness r
and message m. Further, the scheme needs to provide a verification function
Verify(pk,m, σ) ∈ {0, 1} for public key pk, message m and signature σ. For
a valid key pair (pk, sk) it holds that ∀r,m.Verify(pk,m, Sign(sk, r,m)) = 1.
We write Sign(m) and Verify(m,σ) when the other arguments are clear from
the context.

– E is an IND-CPA secure public key encryption scheme (e.g. ElGamal) to
produce ciphertext suitable as input for the privacy-preserving tally. The
scheme needs to provide an encryption function E ← Enc(pk, r,m) for pk
the public key, r the encryption randomness and m the message. Likely, Enc
operates on an aggregated public key of which a private key share is at each
control component. We write Enc(m) when the other arguments are clear
from the context.

3.1 Setup

In the setup phase, the setup component generates key material and sends the
result to the control components and to the voters.

Alg.: GenPartialBallot()

for C ∈ C do
vv r←− Znv

Ctvv← Ctvv ∪ (C, vv)

ca r←− Zna

cv r←− Znv

p r←− P|C|

return (Ctvv, ca, cv, p)

Algorithm 1: Generates
a partial ballot.

Alg.: MergePartialBallots(∀i ∈ [1,m].b(i))

∀i ∈ [1,m].(Ctvv(i), ca(i), cv(i), p(i))← b(i)

for C ∈ C do
∀i ∈ [1,m].vv(i) .←− (C, .) ∈ Ctvv(i)

CtVV← CtVV ∪ (C,⊕m
i=1 vv(i))

CA← ⊕m
i=1 ca(i)

CV← ⊕m
i=1 cv(i)

PtC← PtC ∗
∏m

i=1 p(i)

return (CtVV,CA,CV,PtC)

Algorithm 2: Merges partial ballots gener-
ated by Algorithm 1.

3.2 Voting phase

In the voting phase, the voter casts and confirms their vote together with the
control components (see Protocol 2 (cast vote) and Protocol 3 (confirm vote)).
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Voter Setup component CC(i)

∀Id ∈ Id ∀Id ∈ Id i ∈ [1,m]

∀i ∈ [1,m].b(i) r←− GenPartialBallot()

B← MergePartialBallots({b(i) | i ∈ [1,m]})
Id,B Id, b(i)

S S

(. . . ,CA, . . . ,PtC)← B
hCA← Hash(CA)
CtE← {(C,E) | C ∈ C;E ← Enc(C ∗ PtC−1)}

hCA,CtE
A

Protocol 1: Setup phase where the setup component establishes key material for the
control components (CC) and the voters.

Voter CC(i) CC(j)

∀Id ∈ Id i ∈ [1,m] j ∈ [1,m]\i

knows Id,B knows (Id, b(i),CtE)
(CtVV,...,PtC)← B (Ctvv,...)← b(i)

decides plain vote P
C

.←− (P, .) ∈ PtC
Id, C

asserts C ∈ C
asserts Id /∈ CSync

CSync ← CSync ∪ {Id}
E ← (C, .) ∈ CtE
σ(i) ← Sign(Id, E)

σ(i)

A A
σ(j)

assert ∀j ∈ [1,m]\i.Verify((Id, E), σ(j))

CCast ← CCast ∪ {(Id, E)}
vv(i) .←− (C, .) ∈ Ctvv

vv(i)

VV .←− (C, .) ∈ CtVV
asserts VV = ⊕m

i=1 vv(i)

Protocol 2: Voting phase (1/2) where the voter casts their vote. The control com-
ponents (CC) check the authentication, synchronize state and then respond with the
verification specific to the received vote. Finally, the voter checks the verification.
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Voter CC(i)

∀Id ∈ Id i ∈ [1,m]

knows Id,B knows (Id, b(i), hCA)

(...,CA,CV,...)← B (..., cv(i),...)← b(i)

Id,CA

asserts (Id, .) ∈ CCast

asserts Hash(CA) = hCA

E ← (Id, .) ∈ CCast

CConf ← CConf ∪ {(Id, E)}
cv(i)

asserts CV = ⊕m
i=1 cv(i)

Protocol 3: Voting phase (2/2) where the voter confirms their vote. The control
components (CC) check the authentication and then respond with a verification that
the confirmation has been received. Finally, the voter checks the verification.

If the voter reaches the end of both protocols, the voting procedure was
successful and no other actions are necessary. If otherwise the voter aborts, they
are instructed to use a different voting channel.

The system includes the vote for tallying as soon as the voter entered the
confirm authentication CA. But the voter may also participate over a different
voting channel (e.g. because they did not receive a correct confirm verification),
so duplicates over the different voting channels need to be dealt with.

3.3 Tally phase

At the end of the voting phase, each control component has a list of confirmed
votes CConf which need to be tallied. All correctly processing control components
have the same CConf in their local state. However, dishonest control components
might have added, modified or dropped entries in their local CConf, so we need
to clearly define what list of ciphertext is to be tallied.

Definition 1. CAgre contains all ciphertext entries E for which it holds that for
some voter Id, the CA is known and from all control components there exists a
signature over (Id, E) (i.e. ∀i ∈ [1,m].∃σ(i).Verify((Id, E), σ(i)).

To establish CAgre, each control component sends CConf with the proof for
each entry (CA and signatures over (Id, E)) to all other control components.
Each control component then adds all E to CAgre for which the definition holds,
considering their own CConf and proofs, as well as the C ′

Conf and proofs received
from the other control components.

After establishing CAgre, the control components then execute the privacy-
preserving verifiable tally-mechanism, with the ciphertext given by CAgre as
input. The correct execution of all the steps are provable to third parties.
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3.4 Extensions

With the core protocol given, we now improve on functionality and security.

Practical availability As presented here, the voter directly communicates with
the control components, hence an adversary may try to flood the control com-
ponents with bogus requests. As soon as a single control component is unable to
process more requests, honest voters can no longer cast and confirm votes. How-
ever, verification of authentication and validation of votes is efficient: Only hash
and set membership checks are needed (but e.g. no asymmetric cryptography).
Further, the checks operate solely on public data.

To improve availability, an untrusted server component can be introduced
specifically hardened to resist such flooding attacks. The server component is
placed in between the voter and the control components. If said system then
operates correctly, any request which reaches the control components will pass
authentication and validation, minimizing load on the control components’ side.

Supporting multiple elections, voting choices and eligibility So far, we only de-
scribed how a single popular vote or election will proceed for a single voting
choice. However, votes are usually held over multiple issues at the same time.
Further, depending on the issue voted on, multiple voting choices are possible.
Also, voters might not all be of the same eligibility. To ensure the protocol
is applicable to many voting scenarios, we aim to support k-out-of-n elections
with varying eligibility per voter, which for example corresponds to elections in
Switzerland [6, Chapter 2.2.2/2.2.3].

To support multiple issues at the same time, additional sets of voting codes
C are chosen. Consequentially, the setup phase handles additional permutations
corresponding to each additional set of voting codes. To support k-out-of-n is-
sues, the voter has to submit exactly k voting options out of |C| = n. To support
different eligibilities, voters are restricted in the sets of voting codes they can sub-
mit a vote for. Consequentially, the vote validation (see Protocol 2) is extended
to ensure the sets of voting codes submitted, and the number of submitted voting
options per set of voting codes, is valid.

To improve privacy of voters with restricted eligibility, the tally mechanism
may tally each issue (i.e. each set of voting options) separately.

Audit of the setup component The setup component needs to be fully trusted.
Notably it could switch vote and verification codes of plain votes, such that a
different voting option is voted for than intended. We can introduce an audit
procedure to improve detection of a misbehaving setup component.

To make an audit of the setup component practical, we first ensure it only
runs deterministic algorithms. We implement this by running GenPartialBallot()
at each control component instead of the setup component, and consequentially
reverse the corresponding secure channel (now from the control components to
the setup component). Note how MergePartialBallots() ensures that if at least
one b(i) is generated honestly, the adversary has no advantage to guess values in
B.
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To audit the setup component, we add n additional entries to Id , for n chosen
in such a way that if n voters are audited, the risk is sufficiently minimized. After
the setup component finishes execution, each control component i chooses some
subset of voters to audit Id (i)

A ⊂ Id for | ∪ Id (i)
A | = n. Any corresponding Id

can no longer be used to cast votes, but instead the control components publish
b(i). The control components then assert that B, hCA and (C,E) have been
generated correctly.

Making the protocol robust outside the adversary model As presented, the proto-
col is secure within the adversary model. However, we may also want to preserve
security properties outside the adversary model. So even if a presumed honest
party is controlled by the adversary, given some additional assumptions, we still
want to deliver some guarantees.

Note how the mechanisms presented here cannot prevent all attacks of a
presumed honest party. For example, no mechanism prevents a dishonest setup
component to person-in-the-middle the individual verifiability check, and if all
control components are dishonest, they can easily drop votes. But the mecha-
nisms might still manage to increase security in practical scenarios.

To prevent a dishonest setup component to insert votes for abstaining voters,
the control components can inform the user directly about whether their vote is
considered in the tally (i.e. is part of CConf) after the voting phase has ended.
This assumes an authenticated channel to the voter for that purpose.

To prevent a dishonest setup component to target specific voters (i.e. switch-
ing voting and verification codes for voters likely voting in a certain way), the
secure channel to the voter can obfuscate to the setup component which actual
voter (name, address) is assigned which Id. For example, if the secure channel
to the voter is implemented over postal mail, the voting sheets can be printed
first, physically shuffled, and only then be put into addressed envelopes.

To prevent jointly dishonest control components to insert or modify votes,
the setup component can generate a signature key pair per voter, of which the
public key is published. The voter device scans the private key together with
the identification, and signs the submitted vote.4 Only votes which have a valid
signature are included in the tally, to be checked by an auditor. This assumes
an honest setup component, an honest voter device and an honest auditor.

To prevent jointly dishonest control components to learn the vote of a voter,
an additional tally component can be introduced which contributes part of the
decryption key and participates in the tally. The tally component is therefore
included in the group of control components of which only one needs to be
honest for the security properties of the tally mechanism to be preserved. From
a practical point of view, the tally component may indeed be easier to secure, as
it does not need to participate in the voting phase (hence needs not be "online").
If this same tally component is involved in proving the participation of voters,
it further ensures that dishonest control components cannot drop or add votes.

4 Note how this does not change the voter interaction.
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